CHAPTER IV.

Of Rectification.*

THE prime object of rectification is to free the spirit from the essential oil of the ingredients, from which it has been distilled; or from any disagreeable flavour, which it may have received. In order that this may be more easily accomplished, very great care should be taken in the first distillation of the spirit; that is, that it should be run off with a slow fire, by this means but a small quantity of the oil comes over with the spirit, and that not so intimately blended, as by a rapid distillation. This, though by no means a complete rectifier, has the effect of rendering the spirit much more mild, and easier to be operated upon, by a future process; for it has been made very evident, that it is much easier, to prevent the mixture of a great part of the essential oil, than to free a spirit from it, which has become completely impregnated.

* In treating of rectification, the author has avoided all those tedious, expensive, and ridiculous processes made use of in this country and in England, previous to the discovery of the effect of charcoal, on spirits; and in this and the following chapter, he has endeavoured to give only such hints, as may be certainly useful to the American distiller; and mentioned ingredients which are attainable at a reasonable expense.
A great variety of methods have been tried, to effect this desirable object, though without success; and there is scarcely a distiller without his favourite nostrum; these in general are so inefficient, and many so absurd, that a bare enumeration of them, would be a waste of time and paper; suffice it to say, that where they succeed in taking off the objectionable flavour of the spirit, they generally leave a worse.

Although no efficient method has been made public*

* When I was first made acquainted with Mr. Allison's process for neutralizing spirit, I thought the effect could be more speedily obtained by distillation. It was, however, considered as the peculiar excellence of his plan, that the expense of a still or of fuel was unnecessary. I thought no more of the subject, therefore, until some time in the year 1806 or 1807, when I happened to have some still burnt whiskey, and, at the same time, lying by me, some charcoal, which was not good enough to use in filtration. As my whiskey could not be made worse, I determined to take this opportunity of making an experiment, and accordingly threw into the still, a quantity of each, and agreeably to my expectation, produced a spirit free from the empyreumatic flavour, though not perfectly pure.

I have repeated the experiment since, and am now convinced, that a perfectly pure spirit may be obtained by distillation of any whiskey, however impure, with fresh coal; and that charcoal not good enough for filtration may yet be used with advantage in the above mentioned manner.

Here was a discovery for which a patent, no doubt, might have been obtained; but I thought it too nearly allied in principle to Mr. Allison's plan, and did not prosecute my right. But I have since heard, with some surprise, that a Mr. Parsons, has obtained a patent for a similar plan. How far we may differ, I cannot say; as I have been disappointed in my hope of obtaining a specification of his patent. It is however proper to mention it, as a caution to those who are in the habit of using charcoal, lest they may thereby interfere with the right of another.
for freeing spirit from a disagreeable flavour by distillation, yet we are in possession of a way of effecting this desirable object, which, though somewhat tedious, is very complete, and leaves the spirit perfectly pure, and entirely divested of the aroma or essential oil.

For this important and very valuable discovery we are indebted to the scientific researches of the Rev. Burgiss Allison, now of Washington, D. C. who as early as 1786, made the discovery, which he then communicated to several of his friends.

In 1802, he obtained a patent for improving spirits, and in 1803 made an "improvement in the application of the principle of rectifying or improving spirituous liquors."

Through the politeness of Dr. A. I have been allowed the liberty of publishing his process, at the same time cautioning the public against using it without the liberty of the patentee, by application to whom, however, rights may be obtained on very liberal terms.

Process.

Procure a quantity of good maple or chesnut charcoal, taking care to get such as has not been exposed to the rain or heavy dews; let this be ground per-
fectly fine, and at all times kept as dry as possible. Next, get a proper kind of vessel, say a half hogshead, in which must be fitted very nicely a second or false bottom, about four inches from the other, perforated with as many holes as can conveniently be made with a very large gimlet; a hole must then be made between the two, or in the lower bottom, for the purpose of drawing off the liquor as rectified.

The cask must now be placed in a firm position so that a barrel will stand under it, to receive the liquor. Two pieces of flannel, cut to fit very exactly, must now be laid on the false bottom. Then in another tub mix, or rather moisten well, a quantity of charcoal, with the liquor to be rectified. Strew this paste or mixture closely over the flannel, to the thickness of about an inch, so that no crack or crevice is left; it is then ready to receive the liquor to be rectified; but to avoid disturbing this paste, by pouring on the liquor, it will be advisable to cover it with a piece of gauze, and also to put into the tub, a small piece of board on which the liquor should be gently poured.

This tub so prepared, is now capable of rectifying three hundred gallons without being removed; to do which proceed as follows:

In another tub to be placed close along side of this, mix with a quantity of the liquor to be rectified, as
much charcoal as is necessary to deprive it of its peculiar flavour, which will be about one eighth, according however to the quality of the charcoal, and the strength of the essential oil or flavour to be destroyed; after standing a few minutes, this is now to be gently poured into the filtering tub until it is full; the liquor will soon run through, and after the first quart, will be found perfectly pure and tasteless. By pouring on the liquor too fast at first, it will sometimes get down the sides of the tub, and by blacking the lower part of the cask, render it unfit for the operation, until cleaned; to avoid this, it will be better to pour in about four gallons of liquor, mixed with a larger proportion of charcoal than necessary; when this runs perfectly pure, the cask may be filled without danger of accidents, twice every day.

After the process has been continued some days, the cask becomes nearly full of charcoal, and cannot be longer used, until emptied; but this charcoal has retained a quantity of spirit; to extract which, water must be poured on above, so long as any spirit remains; a part of the spirit runs out of equal strength, with what was used; it, however, gradually becomes weaker, until there is nothing but water; the weaker part must be distilled.

It may be proper to observe that nothing should be used in this operation, that can possibly give a flavour to the spirit.
As it is sometimes difficult to get charcoal ground at a mill; a writer has recommended the following method; he says, "I have constructed a small hand mill, with which, one person may grind or pulverize, sufficient for rectifying two hundred gallons of spirit per day. This is done by means of a screw, made precisely in the form of a common screw augur, about eighteen inches in length five inches in diameter, gently tapering to the extremity, to about one inch. This screw is laid in a wooden bed, into which the large lumps are thrown; and, by turning this by hand, the large lumps are by that means crushed. After passing the length of the screw, it is found broken into pieces, of the size of grains of Indian corn, and falls into the hopper of a small corn mill, in the form of an iron coffee mill, though larger, and is worked by the same power."

"By this means the process of pulverizing is greatly facilitated, and one man may, as above stated, furnish any desired quantity with convenience, as he may enclose all his works in a box or linen, and deliver it into another closed vessel, without making any dust, and save his lungs from the disagreeable effect created in operation."
CHAPTER V.

Concerning the Imitation of Foreign Spirits.

BY the process of rectification detailed in the preceding chapter, the operator will be in possession of a perfectly pure and tasteless spirit; to which any flavour that may be desired, can be easily given by the application of the proper ingredient, or use of the essential oil.

Gin, brandy, and Jamaica rum, have been so well imitated as to deceive very good judges, but so many unsuccessful attempts have been made by unskilful and injudicious operators, that a prejudice has arisen against what is termed patent brandy, which is heightened by the general dislike of the mixture and adulteration of spirits.

The usual method is to mix one gallon of the brandy or spirit, to be imitated, with two gallons of rectified or neutralized spirit; which is its most appropriate name; the proper proportions, however, must depend upon the purity of the neutralized spirit, and the relative flavour of the brandy, or other spirit which may be used; as the greater the quantity of the essential
oil it may posses, the smaller proportion will effectuate the purpose; much then depends upon the quality of the ingredients, and it is requisite that the operator be a man of correct taste to be able properly to apportion them. But as all spirit is radically the same, receiving its peculiar flavour from the presence of an essential oil, a certain portion of which is necessary, it is evident that no attempt at imitation can be completely successful, without having this due portion of essential oil.

Thus, although a mixture of one gallon of French brandy, and two gallons neutralized spirit will smell exactly like brandy, yet will there be deficiency of two third parts of essential oil, which will, however be only detected when mixed with water, and by one accustomed to the full, luscious taste given by the essential oil of Bordeaux, or Cogniac brandy. An ingredient, therefore, possessing the flavour of brandy is here wanted to supply this deficiency; none such has as yet been discovered in this country.

It is obtained in England by fermenting dried wine lees and extracting therefrom a spirit strongly impregnated with the essential oil, of which a sufficient quantity is added to the neutralized spirit to give the desired flavour.

These lees may be imported from France; but the American distiller who makes the attempt must be careful, to have the kind designated, lest he may
through ignorance or mistake, endeavour to make Cogniac brandy, from Bordeaux lees.

A spirit also may be obtained by fermenting raisins with water, and a small quantity of sugar, which will be highly serviceable.*

Another method is to scorch or partially burn a quantity of Prunes, and infuse them in the neutralized spirit. They impart a rich luscious flavour, and the addition of about one-eighth part of strongly flavoured brandy renders the imitation very complete. This plan is objectionable on account of the cost of prunes and the trouble of preparing them.

The quantity necessary can alone be determined by experiment.

Jamaica, and other kinds of rum generally contain so large a portion of essential oil, that they are rather improved by a mixture with an equal portion of neutralized spirit.

To give an agreeable vinosity to this brandy a few drops of sweet spirits of nitre may be added.

* Dr. Clark, in his travels, relates, that about 150 or 200 vessels are employed to carry nardoe, a marmalade of grapes, and beemis, a syrup made from various fruits by boiling them with honey, from Trebizond and Sinope, to Taganrogy in Tartary. Raisins of the sun, are also taken in great quantities. All these are used in the distilleries; and the spirit is sold through the Russian empire as French brandy.—page 267.
CHAPTER VI.

Of Alcohol, or Spirits of Wine.

The term alcohol is applied, exclusively, by modern chemists, to the purely spirituous parts of all liquors that have undergone the vinous fermentation.

Alcohol is in all cases, the product of fermentable matter, and is formed by the successive processes of vinous fermentation, and distillation. All fermented liquors, therefore, agree in these two points; the one, that a saccharine juice has been necessary to their production; and the other, that they are capable of furnishing an ardent spirit by distillation.

Various kinds of ardent spirits are known in commerce, such as brandy, rum, arrack, malt spirit, whiskey; these differ from each other in colour, smell, taste and strength; but the spirituous part to which they owe their inflammability, their hot fiery taste, and their intoxicating power is the same in each, and may be procured in its purest state by rectification, which is performed by means of charcoal, and by repeated distillation.
Of Alcohol, or Spirits of Wine.

Alcohol, as well as ardent spirits of different kinds, is procured most largely in this country, from a fermented grain liquor, prepared for the express purpose of distillation from grain; but in the wine countries, the spirit is obtained from the distillation of wine; hence the synonimous term, spirit of wine.

Alcohol is a colourless transparent liquor, appearing to the eye like pure water. It possesses a peculiar penetrating smell, distinct from the proper odour of the distilled spirit from which it has been procured. To the taste it is excessively hot and burning, but without any peculiar flavour. From its great lightness and mobility, the bubbles which are formed on shaking it, subside almost instantaneously, and this is one method of judging of its purity. Alcohol is very easily volatilized by the heat of the hand; it even begins to be converted into vapour at the lowest temperatures, absorbing heat from surrounding bodies, as it assumes that elastic form. It boils at about 176, and the vapours when condensed, return unaltered to their former state. It has never been frozen by any cold,* natural or arti-

* Since this was written, Mr. Hutton, of Edinburgh, has announced some experiments upon the freezing of alcohol, which requires a degree of cold that has never before been produced by any means, and which is stated by him to be 116 degrees below zero of Fahrenheit. The fluid was frozen to a perfectly solid mass, composed of three strata, the uppermost of a yellowish green, the second of a pale yellow colour; and the third which greatly exceeded the rest in quantity, and was the pure alcohol, nearly transparent, and colourless. It was proved that the alcohol was not decomposed in the process, but merely separated from two foreign substances which it had held in solution; these are highly volatile, and cannot be separated but by
ficial, and hence its use in thermometers to measure very low temperatures.

Alcohol takes fire very readily upon the application of flame, the speedier in proportion to its purity. It burns with a pale flame, white in the centre and blue at the edges; gives but a small degree of heat, and is so faint as to be scarcely visible in broad day light. It burns without any smoke or vapour, and if strong leaves no residuum; but if weak, is extinguished spontaneously, and the watery part remains behind.

Alcohol mixes with water in every proportion. Heat is extricated during the mixture, which is sensible to the hand, even in small quantities. At the same time there is a mutual penetration or concentration of parts, so that the bulk of the two liquors, when mixed, is less than when separate, consequently the specific gravity of the mixture is greater than the mean specific gravity of the two liquors taken apart. The alcohol may be again for the most part separated from the water by distillation with a gentle heat. Thus, if one part of alcohol, whose specific gravity is 817, be mixed with one part of water, whose specific gravity is 1000, the specific gravity of the compound will not be the mean of their respective gravities, 908.5, but will not be less than 934; and a freezing; to them the alcohol owes its peculiar flavour. Mr. Hutton has not made public the method of producing this degree of artificial cold. See Repository of Arts, vol. 34.
difference will likewise obtain in whatever proportions the fluids are mixed.

This difference proceeds in a decreasing ratio; that is to say, when ten parts of alcohol are mixed with one of water, the difference in the specific gravity, which is produced, is greater than when the ten parts are mixed with two, and greater in this than when mixed with three.

The progression, however, is not regular, and hence the specific gravity of any possible mixture of alcohol and water, cannot be calculated \textit{a priori}, but must be determined by actual experiment.

When alcohol is diluted with an equal weight of water, it forms what is called proof spirit, but has not the same flavour with distilled spirit of the same strength, in which probably the combination is more intimate, and it is known indeed, that the increase of density from such a mixture, does not at once obtain its maximum, proving, therefore, that the combination is not at once complete. Hence the impropriety of laying by very \textit{strong spirit} to be meliorated by age; it should not be more than second or third proof.

Alcohol is capable of uniting with a great number of substances, a circumstance which renders its use very extensive in a variety of chemical processes, and in analysis.
Of Alcohol; or Spirits of Wine.

A peculiar colour is perceived in the flame of the solution of some of the acids in alcohol, when set on fire. The solution of nitre gives a pale yellow flame, that of boracic acid is a faint green, all the solutions of copper burn with a beautiful bright green, and those of nitrated or muriated strontian, shine with a deep blood red.

Alcohol is an excellent solvent for some essential oils, and in general for the most odorous and inflammable of the vegetable productions.

In the essential oil of a plant resides the spiritus rector, or the aroma, that which gives the exquisite perfume to the rose or jessamine; when these odoriferous plants are distilled with alcohol, it rises strongly impregnated with their scent and flavour, and as it takes up no colouring matter it remains perfectly clear as before. Thus, the common lavender water is alcohol distilled off with the lavender plant, and holding in solution the essential oil in which the scent resides. The distilled spirits in pharmacy, are similar preparations of alcohol, containing the flavour of spices, aromatics, or other substances with which it has been distilled.

Various tests have been devised to ascertained the purity of alcohol, and the proportion of water which it contains. A spirit, which is very free from water, will, when set fire to, burn away without leaving any residue; if it is of moderate strength it will burn for
a certain time, and then become extinguished, and leave a portion of water, more or less considerable, according to the degree of dephlegmation; if on the contrary, it is very watery, it will not kindle at all.

This test, however, is by no means accurate, since the heat of the burning spirit will evaporate part of the water which should be left in the residuum.

Another test, is to pour a small quantity of spirit on a small heap of gunpowder and kindle it. The spirit burns quietly on the surface of the powder until it is all consumed, and the last portion fires the powder if the spirit was pure, but if watery, the powder becomes too damp and will not explode. 'This test, also, is very inaccurate, for if the powder be drenched even with a strong spirit, it remains too damp to be fired; and, if it be only barely moistened, any spirit that will burn will inflame it. A better test is, to shake the spirit in a vial with some dry carbonated alkali; pearl or pot ash recently dried by a strong heat; but the most accurate of all is to ascertain its specific gravity, and compare it with the density of known quantities of alcohol and water, previously mixed for the purpose of giving a standard of comparison, and this is best determined by the hydrometer or gravimeter.
CHAPTER VII.

Of Bodies proper for Distillation, and their products.

THE proper subjects for distillation are flowers, fruits, seeds, spices, and aromatic plants.

By distillation, and digestion, we extract the colour and smell of flowers in simple water, and essences.

We extract from fruits, at least from some, colour, taste, &c.

From aromatic plants, the distillers draw spirits, essences, simple, and compound waters.

From spices, are produced essences, or in the languages of chemists, oils and perfumes, and also pure spirits.

From seeds and berries are drawn simple waters,
pure spirits; and from some, as those of annise, fennel, and juniper oil.

The colour of flowers is extracted by infusion, and likewise by digestion, in brandy or spirits of wine; the smell is extracted by distillation; the simple water with brandy, or spirits of wine.

Substances are said to be in digestion, when they are infused in a menstruum, over a very slow fire. This preparation is often necessary in distillation, for it tends to open the bodies, and thereby free the spirits from their confines, whereby they are better enabled to ascend. Cold digestions are the best; those made by fire, or in hot materials, diminish the quality of the goods; as some part, as the most volatile, will be lost. It is of absolute necessity for extracting the spirits and essences of spices.

In bodies that have been digested, the spirits ascend first; whereas in charges not digested, the phlegm ascends before the spirits.

Another remark should be mentioned. That in mixed charges, consisting of flowers, fruits, and aromatic plants, put into the alembic without previous digestion, the spirits of the flowers ascend first; and notwithstanding the mixture, they contract nothing of the smell, or taste of the fruits, and plants. Next after the spirits of the flowers, those of the fruits ascend, not in the least impregnated with the smell or taste of either the flowers or plants. And in the last place, the spirits of the plants distil no less neatly than the former. Should this appear strange to any one experience will convince him of the truth.
CHAPTER VIII.

Of Distilling Simple Waters.

The plants designed for this operation are to be gathered when their leaves are at full growth, and a little before the flowers appear, or at least before the seed comes on; because the virtue of the simple expected in these waters is often little, after the seed or fruit is formed; at which time plants begin to languish. The morning is the proper time to gather them, because the volatile parts are then condensed by the coldness of the night, and kept in by the dew not yet exhaled by the sun.

Flowers should be gathered before they are quite opened; and seeds, when they arrive at perfect maturity.

When the desirable property is in the root, it should be dug in the winter or spring while full of sap. And the bark or sap is most strongly impregnated during the summer.

The subject being chosen, let it be bruised, or cut if necessary, and with it fill two thirds of a still, leaving a third part of it empty, without squeezing the matter close; then pour in as much rain, river, or spring water, as will fill the still the same height; then fit on the head, and let the plant digest, with a small
degree of heat, as long as may be thought necessary; after which raise the fire and distil as usual.

Such is the general method of procuring simple waters; the following rules however are necessary to render it applicable to all sorts of plants.

1. Let the aromatic, balsamic, oily, and strong smelling plants, which long retain their natural fragrance, such as balm, hyssop, juniper, marjoram, pennyroyal, mint, rosemary, lavender, sage, &c. be gently dried a little in the shade; then digest them for twenty-four hours, in a close vessel, and afterwards distill, and they will afford excellent waters.

2. When waters are to be drawn from seeds, barks, or woods, that are very dense, ponderous, tough, and resinous, let them be digested for three, four or more weeks, with a greater degree of heat, in a close vessel, with a proper quantity of salt added, to open, and prepare them better for distillation, and prevent putrefaction, which would certainly happen without it.

3. Those plants which diffuse their odour, to some distance from them, and thus soon loose it, should be distilled immediately upon gathering in the proper season, without any previous digestion; thus borage, bugloss, jessamine, white lilies, lilies of the valley, roses, sweet briar, lilac, &c. are hurt by heat, digestion, or lying in the air. They may, however, be preserved by being packed in close vessels with salt.

Lastly, those that contain a more fixed oil, should be imperfectly fermented, by which process we obtain
the virtue very little altered from its natural state, though rendered much more penetrating and volatile. The operation is performed in the following manner:

Take a sufficient quantity of any fresh plant, cut it, and bruise it, if necessary; put it into a cask, leaving a space empty at top, of about four inches, then take as much water as would, when added, fill the cask to the same height, including the plant, and mix therein about an eighth part of honey, if it be cold weather, or one twelfth, if it be warm, or the same quantity of sugar will do, or half an ounce of yeast to each pint of water will have the same effect. When the proper quantity of honey is added to the water, let it be warmed, and poured into the cask, and set in a warm place, to ferment for two or three days; but the herbs must not be suffered to fall to the bottom, nor the fermentation be more than half finished.

The whole must then be committed to the still and the fire raised by degrees; for the liquor containing much fermenting spirit, easily rarefies with the fire, froths, swells, and therefore, becomes very subject to boil over; we ought, therefore, to work slower, especially at first.

Thus may simple waters be made fit for long keeping without spoiling; the proportion of inflammable spirit generated in the fermentation, serving excellently to preserve them.
CHAPTER IX.

Of making Compound Waters and Cordials.

MR. COOPER has given the following general rules as necessary to be observed in this branch of distillery.

1. The artist must always be careful to use a well cleansed spirit, or one freed from its own essential oil, for as a compound water is nothing more than a spirit impregnated with the essential oil of the ingredients, it is necessary that the spirits should have deposited its own.

2. Let the time of previous digestion be proportioned to the tenacity of the ingredients, or the ponderosity of their oil.

Thus cloves and cinnamon require a longer digestion before they are distilled, than calamus aromaticus, or orange peel. Sometimes cohabation is necessary, that is, returning the distilled water upon a fresh portion of the plant, &c. for instance, in making the strong cinnamon water, because the essential oil of cinnamon is so extremely ponderous, that it is difficult to bring it over the helm with the spirit without cohabation.

3. Let the strength of the fire be proportioned to the ponderosity of the oil intended to be raised with
Of Cordials.

the spirit, thus for instance, the strong cinnamon water requires a much greater degree of fire than that from lax vegetables, as mint, balm, &c.

4. Let only a due proportion of the finest parts of the essential oil be united with the spirit; the grosser and less fragrant parts of the oil not giving the spirit so agreeable a flavour, and at the same time renders it thick and unsightly. This may in a great measure be effected by leaving out the feints, and making up to proof with fine soft water in their stead.

These four rules carefully observed will render this part of distillation easy and simple. Nor will there be any occasion for the use of burnt allum, white of eggs, isinglass, &c. to fine down cordial waters; for they will presently be fine, sweet and pleasant tasted, without any further trouble.

Recipe 1.—Clove Water.

Take four pounds of bruised cloves, half a pound of pimento, or allspice, and sixteen gallons proof spirits. Digest the mixture in a gentle heat, and then draw off fifteen gallons, with a moderately brisk fire. This as well as any other water, may be coloured with a strong tincture of cochineal, or colouring matter; and sweetened at pleasure with double refined sugar.

Recipe 2.—Lemon Water.

Take of dried lemon peel, four pounds; pure proof spirit, ten and a half gallons; and one of water; draw off ten gallons by a gentle fire; and dulcify as above.
Recipe 3.—Citron Water.

Take of the dry yellow rinds of citron, three pounds; of orange peel, two pounds; bruised nutmegs, three quarters of a pound; clean proof spirit, ten and a half gallons; water, one gallon. Digest them in a moderate heat; then draw off ten gallons, and dulcify as above.

Recipe 4.—Orange Water.

Take of the yellow part of fresh orange peel, five pounds; clean proof spirit, ten and a half gallons; water, two gallons; and draw off ten over a slow fire.

Recipe 5.—Lavender Water.

Digest in ten gallons rectified spirits of wine and one gallon of water, fourteen pounds of lavender flowers; then draw off ten gallons for use; this should be done in Balneo mariae, or water bath.

Recipe 6.—Lavender Compound,

May be made without distilling, as follows: Fill a gallon jug with lavender flowers; then pour on as much French brandy or pure rectified spirits, as the jug will hold, cork it up, and set it in the sun shine, shaking it daily; in a month or two it will be fit for use, when it should be poured off and the jug refilled.
Of Cordials.

Recipe 7.—Peppermint Water.

Digest in ten and a half gallons of proof spirits, and one gallon of water, fourteen pounds of dry peppermint leaves; then with a moderate heat draw off ten gallons, and dulcify at pleasure.

Recipe 8.—Compound Gentian Water.

Infuse in six quarts of proof spirits, and one quart of water, eight ounces of the leaves and flowers of the lesser centaury, three pounds of gentian root sliced, and six ounces of orange peel; then draw off until the feints begin to rise. A powerful preventative against fever and ague.

Recipe 9.—Anniseed Water.

Take three ounces of carroway seeds, six ounces of anniseeds, water one gallon, proof spirits four gallons; infuse them all night in your still, and draw off until proof with a slow fire; dulcify with white sugar at pleasure.

Recipe 10.—Another Way.

Distil in one gallon water, and twelve and a half gallons of proof spirits, two pounds of bruised anniseeds; then draw off ten gallons with a moderate fire; and dulcify with white sugar. This is the method of making the Malta anniseed, esteemed the finest in the world.